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Abstract: The paper gives an overview of feature se-
lection (abbreviated FS in the sequel) techniques in sta-
tistical pattern recognition with particular emphasis to
recent knowledge. FS methods constitute the method-
ology of selecting the most informative variables for
decision-making problems of classification type. Besides
discussing the advances in methodology it attempts to
put them into a taxonomical framework. The methods
discussed include the latest variants of the optimal al-
gorithms, enhanced sub-optimal techniques and the si-
multaneous semi-parametric probability density function
modeling and feature space selection method. Some re-
lated issues are illustrated on real data with use of Fea-
ture Selection Toolbox software.

1 Introduction

A broad class of decision-making problems can be solved
by learning approach. This can be a feasible alternative
when neither an analytical solution exists nor the math-
ematical model can be constructed. In these cases the
required knowledge can be gained from the past data
which form the so-called learning or training set. Then
the formal apparatus of statistical pattern recognition
can be used to learn the decision-making. The first and
essential step of statistical pattern recognition is to solve
the problem of feature selection or more generally dimen-
sionality reduction.

The methodology of feature selection in statistical
pattern recognition will be presented in this survey pa-
per in the form of a tutorial. The problem will be in-
troduced in a wider context of dimensionality reduction
which can be accomplished either by a linear or nonlinear
mapping from the measurement space to a lower dimen-
sional feature space, or by measurement subset selection.
The tutorial will focus on the latter. The main aspects of
the problem, i.e., criteria for feature selection and the as-
sociated optimization techniques will be discussed. The
material presented will be structured according the level
of prior knowledge available to solve the feature selection
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problem. The techniques covered will include efficient
optimal search algorithms, Floating Search algorithms,
and simultaneous probability density function modeling
and dimensionality reduction for feature selection involv-
ing nonparametrically distributed classes.

The objectives are: to stress the analogy between
decision-making in various fields and the usefulness of
learning approaches — e.g., in medicine, management,
economics and finances, and to demonstrate the necessity
of selecting the most informative variables in order to im-
prove the quality of decision-making based on the learn-
ing approach. The target audience may include newcom-
ers to the field of pattern recognition as well as practi-
tioners wishing to become more familiar with available
dimensionality reduction methods and with their critical
analysis with respect to usability in practical tasks.

Pattern recognition can be with certain simplification
characterized as a classification problem combined with
dimensionality reduction of pattern feature vectors which
serve as the input to the classifier. This reduction is
achieved by extracting or selecting a feature subset which
optimizes an adopted criterion.

2 Dimensionality Reduction

We shall use the term “pattern” to denote the D-
dimensional data vector x = (z1,...,2p)T of measure-
ments, the components of which are the measurements of
the features of the entity or object. Following the statis-
tical approach to pattern recognition, we assume that a
pattern x is to be classified into one of a finite set of C' dif-
ferent classes Q = {wy,ws, -+, we}. A pattern x belong-
ing to class w; is viewed as an observation of a random
vector X drawn randomly according to the known class-
conditional probability density function p(x|w;) and the
respective a priori probability P(w;).

One of the fundamental problems in statistical pat-
tern recognition is representing patterns in the reduced
number of dimensions. In most of practical cases the
pattern descriptor space dimensionality is rather high. It
follows from the fact that in the design phase it is too dif-
ficult or impossible to evaluate directly the “usefulness”
of particular input. Thus it is important to initially in-
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clude all the “reasonable” descriptors the designer can
think of and to reduce the set later on. Obviously, infor-
mation missing in the original measurement set cannot
be later substituted. The aim of dimensionality reduc-
tion is to find a set of new d features based on the input
set of D features (if possible d < D), so as to maximize
(or minimize) an adopted criterion.

e Dimensionality reduction divided according to the
adopted strategy:
1. feature selection (FS)
2. feature extraction (FE)

The first strategy (FS) is to select the best possible
subset of the input feature set. The second strategy
(FE) is to find a transformation to a lower dimensional
space. New features are linear or nonlinear combina-
tions of the original features. Technically FS is special
case of FE. The choice between FS and FE depends on
the application domain and the specific available train-
ing data. FS leads to savings in measurements cost since
some of the features are discarded and those selected re-
tain their original physical meaning. The fact that FS
preserves the interpretability of original data makes it
preferable in, e.g., most problems of computer-assisted
medical decision-making. On the other hand, features
generated by FE may provide better discriminative abil-
ity than the best subset of given features, but these new
features may not have a clear physical meaning.

e Alternative division according to the aim:
1. dim. reduction for optimal data representation
2. dimensionality reduction for classification.

The first aims to preserve the topological structure of
data in a lower-dimensional space as much as possible,
the second one aims to enhance the subset discriminatory
power. In the sequel we shall concentrate on the FS
problem only. For a broader overview of the subject see,
e.g., [4], [18], [29], [39], [43].

3 Feature Selection

Given a set of D features, Xp, let us denote Xy the
set of all possible subsets of size d, where d represents
the desired number of features. Let J be some criterion
function. Without any loss of generality, let us consider
a higher value of J to indicate a better feature subset.
Then the feature selection problem can be formulated as
follows: find the subset X for which

J(Xgq) = max J(X). (1)

Assuming that a suitable criterion function has been cho-
sen to evaluate the effectiveness of feature subsets, fea-
ture selection is reduced to a search problem that detects
an optimal feature subset based on the selected measure.

Note that the choice of d may be a complex issue depend-
ing on problem characteristics, unless the d value can be
optimized as part of the search process.

One particular property of feature selection criterion,
the monotonicity property, is required specifically in cer-
tain optimal FS methods. Given two subsets of the fea-
ture set Xp, A and B such that A C B, the following
must hold:

AC B= J(A) < J(B). (2)

That is, evaluating the feature selection criterion on a
subset of features of a given set yields a smaller value of
the feature selection criterion.

3.1 FS Categorisation With Respect to Opti-
mality

Feature selection methods can be split into basic families:

1. Optimal methods: These include, e.g., erhaustive
search methods which are feasible for only small
size problems and accelerated methods, mostly built
upon the Branch & Bound principle. All optimal
methods can be expected considerably slow for prob-
lems of high dimensionality.

2. Sub-optimal methods: essentially trade the optimal-
ity of the selected subset for computational effi-
ciency. They include, e.g., Best Individual Features,
Random (Las Vegas) methods, Sequential Forward
and Backward Selection, Plus-I-Take Away-r, their
generalized versions, genetic algorithms, and partic-
ularly the Floating and Oscillating Search.

Although the exhaustive search guarantees the optimal-
ity of a solution, in many realistic problems it is com-
putationally prohibitive. The well known Branch and
Bound (B&B) algorithm guarantees to select an opti-
mal feature subset of size d without involving explicit
evaluation of all the possible combinations of d measure-
ments. However, the algorithm is applicable only under
the assumption that the feature selection criterion used
satisfies the monotonicity property (2). This assumption
precludes the use of classifier error rate as the criterion
(cf. Wrappers [12]). This is an important drawback as
the error rate can be considered superior to other crite-
ria [32], [12], [40]. Moreover, all optimal algorithms be-
come computationally prohibitive for problems of high
dimensionality. In practice, therefore, one has to rely on
computationally feasible procedures which perform the
search quickly but may yield sub-optimal results. A com-
prehensive list of sub-optimal procedures can be found,
e.g., in books [3], [6], [43], [39]. A comparative taxonomy
can be found, e.g., in [1], [5], [7], [10], [11], [13], [14], [30],
[41] or [44]. Our own research and experience with FS
has led us to the conclusion that there exists no unique
generally applicable approach to the problem. Some are
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more suitable under certain conditions, others are more
appropriate under other conditions, depending on our
knowledge of the problem. Hence continuing effort is in-
vested in developing new methods to cover the majority
of situations which can be encountered in practice.

3.2 FS Categorisation With Respect to Problem
Knowledge

From another point of view there are perhaps two basic
classes of situations with respect to a priori knowledge
of the underlying probability structures:

e Some a priori knowledge is available — It is at least
known that probability density functions (pdfs) are
unimodal. In these cases, one of probabilistic dis-
tance measures (like Mahalanobis, Bhattacharyya,
etc.) may be appropriate as the evaluation crite-
rion. For this type of situations we recommend ei-
ther the recent prediction-based B&B algorithms for
optimal search (see Sect. 4), or sub-optimal Floating
and Oscillating methods (Section 5).

e No a priori knowledge is available — We cannot even
assume that pdfs are unimodal. The only source
of available information is the training data. For
these situations we have developed two conceptu-
ally different alternative methods. They are based
on approximating unknown conditional pdfs by fi-
nite mixtures of a special type and are discussed in
Section 6.

4 Recent Optimal Search Methods

The problem of optimal feature selection (or more gen-
erally of subset selection) is difficult especially because
of its time complexity. All known optimal search algo-
rithms have an exponential nature. The only alternative
to exhaustive search is the Branch & Bound (B&B) algo-
rithm [20], [6] and ancestor algorithms based on a similar
principle. All B&B algorithms rely on the monotonicity
property of the FS criterion (2). By a straightforward
application of this property many feature subset evalua-
tions may be omitted.

Before discussing more advanced algorithms, let us
briefly summarize the essential B&B principle. The algo-
rithm constructs a search tree where the root represents
the set of all D features, Xp, and leaves represent tar-
get subsets of d features. While tracking the tree down
to leaves the algorithm successively removes single fea-
tures from the current set of “candidates” (X) in k-th
level). The algorithm keeps the information about both
the till-now best subset of cardinality d and the corre-
sponding criterion value, denoted as the bound. Anytime
the criterion value in some internal node is found to be

lower than the current bound, due to condition (2) the
whole sub-tree may be cut-off and many computations
may be omitted. The course of the B&B algorithm can
be seen in Fig. 1 (symbols C, P and A; relate to the more
advanced B&B version to be discussed in Section 4.2).
The described scheme in its simplest form is known as
the “Basic B&B” algorithm. For details see [3], [6].

4.1 Branch & Bound Properties

When compared to the exhaustive search, every B&B
algorithm requires additional computations. Not only
the target subsets of d features Xp_g, but also their
supersets Xp_q—j, 7 = 1,---,D — d have to be eval-
uated. The B&B principle does not guarantee enough
sub-tree cut-offs to keep the total number of criterion
computations lower than in exhaustive search. To re-
duce the amount of criterion computations an additional
node-ordering heuristic has been introduced in the more
powerful “Improved B&B” (IBB) algorithm [3], [6]. IBB
optimizes the order of features to be assigned to tree
edges so that the bound value can increase as fast as
possible and thus enables more effective branch cutting
in later stages. Although IBB usually outperforms all
simpler B&B algorithms, the computational cost of the
additional heuristic can become a strong deteriorating
factor. For detailed discussion of B&B drawbacks see
[37]. In the following we present a more efficient frame-
work for B&B acceleration.

4.2 Fast Branch & Bound

The Fast Branch & Bound (FBB) [37] algorithm aims to
reduce the number of criterion function computations
in internal search tree nodes. A simplified algorithm
description is as follows: FBB attempts to utilize the
knowledge of past feature-dependent criterion value de-
creases (difference between criterion values before and
after feature removal) for future prediction of criterion
values without the need of real computation. Predic-
tion is allowed under certain conditions only, e.g., not in
leaves. Both the really computed and predicted criterion
values are treated as equal while imitating the full IBB
functionality, i.e., in ordering node descendants in the
tree construction phase. If the predicted criterion value
remains significantly higher than the current bound, we
may expect that even the actual value would not be lower
and the corresponding sub-tree could not be cut-off. In
this situation the algorithm continues to construct the
consecutive tree level. However, if the predicted value is
equal or lower than the bound (and therefore there arises
a chance that the real value is lower than the bound), the
real criterion value must be computed. Only if real cri-
terion values are lower than the current bound, sub-trees
may be cut-off. Note that this prediction scheme does
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Figure 2: Simplified diagram of the Fast Branch & Bound algorithm

not affect the optimality of obtained results. The FBB
algorithm course remains similar to that of the IBB, pos-
sible sub-tree cut-offs are allowed according to real crite-
rion values only. Possible inaccurate predictions may re-
sult in nothing worse than constructing sub-trees, which
would have been pruned out by means of classical B&B
algorithms. However, this situation is usually strongly
outweighed by criterion computation savings in other in-
ternal nodes, especially near the root, where criterion
computation tends to be slower. The prediction mecha-
nism processes the information about the averaged cri-
terion value decrease separately for each feature. The
idea is illustrated in Fig. 1. For a detailed and formal
description of this rather complex procedure and other
B&B related topics see [37].

4.3 Improving the “Improved” Algorithm

The FBB operates mostly the fastest among all B&B al-
gorithms. However, it exhibits some drawbacks: it can-
not be used with recursive criterion forms and there is
no theoretical guarantee that extensive prediction fail-
ures won'’t hinder the overall speed, despite the fact that
such faulty behaviour has not been observed with real
data. The B&B with Partial Prediction (BBPP) [37]
constitutes a slightly less effective but more robust alter-
native. While learning similarly to FBB, it does not use
predictions to substitute true criterion values inside the
tree. Predicted values are used only for ordering before
features get assigned to tree edges. In this sense BBPP
can be looked upon as a slightly modified IBB with the
only difference in node ordering heuristics. The perfor-
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Figure 3: Optimal subset search methods performance when mazimizing the Bhattacharyya distance on 30-dimensional

mammogram data (Wisconsin Diagnostic Breast Center).

mance gain follows from the fact, that the original IBB
ordering heuristics always evaluates more criterion values
than is the number of features finally used. For detailed
analysis of BBPP see [37]. Among other recent B&B
related ideas the “trading space for speed” approach [9]
deserves attention as an alternative that may operate ex-
ceptionally fast under certain circumstances. The BBPP
and FBB algorithms are further investigated in [38], [42].

4.4 Predictive B&B Properties and Experimen-
tal Results

When compared to classical B&B algorithms the predic-
tive algorithms always spend additional time for main-
taining the prediction mechanism. However, this addi-
tional time showed not to be a factor, especially when
compared to time savings arising from the pruned cri-
terion computations. The algorithms have been thor-
oughly tested on a number of different data sets. Here
we show representative results on 2-class 30-dimensional

mammogram data (for dataset details see Section 7).
We used both the recursive (where applicable) and non-
recursive Bhattacharyya distance as the criterion func-
tion. Performance of different methods is illustrated in
Fig. 3. We compare all results especially against the
IBB algorithm [3], [6], as this algorithm has been long
accepted to be the most effective optimal subset search
method. Remark: Where applicable, we implement all
algorithms to support the “minimum solution tree” [45].

For discussion about the applicability of optimal
mathods in comparison with sub-optimal methods and
the impact of optimization on classifier performance see
also Section 7.

4.5 Summary of Recent Optimal Methods

The only optimal subset search method usable with non-
monotonic criteria is the exhaustive (full) search. How-
ever, because of exponential nature of the search prob-
lem, alternative methods are often needed. Several re-
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cent improvements of the B&B idea especially in the form
of prediction based FBB and BBPP resulted in a speed-
up factor of 10 to 100 over the simplest B&B form, de-
pending on particular data and criterion used.

It should be stressed that despite the shown advances
all optimal methods remain exponential in nature. If
there is no need to insist on optimality of results (note
that this optimality may be only indirectly related to
classifier performance), sub-optimal search methods offer
greater flexibility and acceptable speed even for high-
dimensional problems, while the solutions found are not
necessarily much worse than optimal.

5 Recent Sub-optimal Search Methods

Despite the advances in optimal search, for larger than
moderate-sized problems we have to resort still to sub-
optimal methods. The basic feature selection approach
is to build up a subset of required number of features in-
crementally starting with the empty set (bottom-up ap-
proach) or to start with the complete set of features and
remove redundant features until d features retain (top-
down approach). The simplest (among recommendable
choices) yet widely used sequential forward (or backward)
selection methods [3], SFS (SBS), iteratively add (re-
move) one feature at a time so as to maximize the in-
termediate criterion value until the required dimension-
ality is achieved. Among the more interesting recent ap-
proaches the following two families of methods can be
pointed out for general applicability and performance
reasons:

1. sequential Floating Search methods [24], [35]

2. Oscillating Search methods [34]

Earlier sequential methods suffered from the so-called
nesting of feature subsets which significantly deterio-
rated the performance. The first attempt to overcome
this problem was to employ either the Plus-I-Take away-
r [also known as (I,r)] or generalized (I,r) algorithms
[3] which involve successive augmentation and depletion
process. The same idea in a principally extended and
refined form constitutes the basis of Floating Search.

5.1 Sequential Floating Search

The Sequential Forward Floating Selection (SFFS) pro-
cedure comnsists of applying after each forward step a
number of backward steps as long as the resulting sub-
sets are better than previously evaluated ones at that
level. Consequently, there are no backward steps at all
if intermediate result at actual level (of corresponding
dimensionality) cannot be improved. The same applies
for the backward version of the procedure. Both algo-
rithms allow a ’self-controlled backtracking’ so they can
eventually find good solutions by adjusting the trade-off
between forward and backward steps dynamically. In a
certain way, they compute only what they need without
any parameter setting.

Formal description of this now classical procedure
can be found in [24]. Neverheless, the idea behind is sim-
ple enough and can be illustrated sufficiently in Fig. 4.
(Condition k = d + § terminates the algorithm after the
target subset of d features has been found and possibly
refined by means of backtracking from dimensionalities
greater than d.) The backward counterpart to SFFS is
the Sequential Backward Floating Selection (SBFS). Its
principle is analogous.

Floating search algorithms can be considered univer-
sal tools not only outperforming all predecessors, but
also keeping advantages not met by more sophisticated
algoritms. They find good solutions in all problem di-
mensions in one run. The overall search speed is high
enough for most of practical problems.

5.2 Adaptive Floating Search

As the Floating Search algorithms have been found suc-
cessful and generally accepted to be an efficient universal
tool, their idea was further investigated. The so-called
Adaptive Floating Search has been proposed in [33]. The
ASFFS and ASBFS algorithms are able to outperform
the classical SFFS and SBFS algorithms in certain cases,
but at a cost of considerabe increase of search time and
the necessity to deal with unclear parameters. Our ex-
perience shows that AFS is usually inferior to newer al-
gorithms, which we focus on in the following.
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5.3 Oscillating Search

The recent Oscillating Search (OS) [34] can be considered
a “higher level” procedure, that takes use of other feature
selection methods as sub-procedures in its own search.
The concept is highly flexible and enables modifications
for different purposes. It has shown to be very powerful
and capable of over-performing standard sequential pro-
cedures, including (Adaptive) Floating Search. Unlike
other methods, the OS is based on repeated modifica-
tion of the current subset X4 of d features. In this sense
the OS is independent on predominant search direction.
This is achieved by alternating so-called down- and wup-
swings. Both swings attempt to improve the current set
X4 by replacing some of the features by better ones. The
down-swing first removes, then adds back, while the up-
swing first adds, then removes. Two successive opposite
swings form an oscillation cycle. The OS can thus be
looked upon as a controlled sequence of oscillation cy-
cles. The value of o (denoted oscillation cycle depth)
determines the number of features to be replaced in one
swing. o is increased after unsuccessful oscillation cycles
and reset to 1 after each X4 improvement. The algorithm
terminates when o exceeds a user-specified limit A. The
course of Oscillating Search is illustrated in comparison
with SFFS in Fig. 5.

8 g
2 2]
@ kol

- T S - R —— d+A
%) %)

V VY v
———————————————— d-A
a) SFFS Iteration b) os Iteration

Figure 5: Graphs demonstrate the course of search al-
gorithms: a) Sequential Floating Forward Selection, b)
Oscillating Search.

Every OS algorithm requires some initial set of d
features. The initial set may be obtained randomly or
in any other way, e.g., using some of the traditional
sequential selection procedures. Furthermore, almost
any feature selection procedure can be used in up- and
down-swings to accomplish the replacements of feature
o-tuples. Therefore, for the sake of generality in the fol-
lowing descriptions let us denote the adding / removing
of a feature o-tuple by ADD(0) / REMOVE(0). For OS
flow-chart see Fig. 6.

5.3.1 Oscillating Search — Formal Algorithm
Description

Step 1: (Initialization) By means of any feature selec-
tion procedure (or randomly) determine the initial set
X4 of d features. Let ¢ =0. Let o = 1.

Step 2: (Down-swing) By means of REMOVE(0) re-
move such o-tuple from Xy to get new set X;_, so that
J(X4—o) is maximal. By means of ADD(0) add such
o-tuple from Xp \ X4, to Xyq_, to get new set X:z SO
that J(X ) is maximal. If J(X}) > J(X,), let X4 = X,
¢=0,0=1 and go to Step 4.

Step 3: (Last swing has not improved the solution) Let
¢ =c+ 1. If ¢ = 2, then nor the last up- nor down-swing
led to a better solution. Extend the search by letting
o=o+1. If o > A, stop the algorithm, otherwise let
c=0.

Step 4: (Up-swing) By means of ADD(0) add such o-
tuple from Xp \ X4 to X4 to get new set X441, so that
J(Xdto) is maximal. By means of REMOVE(o) remove
such o-tuple from Xg, to get new set X, so that J(X),)
is maximal. If J(X,) > J(Xy), let Xq = X, ¢ = 0,
o =1 and go to Step 2.

Step 5: (Last swing has not improved the solution) Let
c=c—+1. If ¢ = 2, then nor the last up- nor down-swing
led to a better solution. Extend the search by letting
o=o+1. If o > A, stop the algorithm, otherwise let
¢ =0 and go to Step 2.

5.4 Oscillating Search Properties

The generality of OS search concept allows to adjust the
search for better speed or better accuracy (lower A and
simpler ADD / REMOVE vs. higher A and more com-
plex ADD / REMOVE). In this sense let us denote se-
quential OS the simplest possible OS version which uses
a sequence of SFS steps in place of ADD() and a se-
quence od SBS steps in place of REMOVE(). As op-
posed to all sequential search procedures, OS does not
waste time evaluating subsets of cardinalities too differ-
ent from the target one. This ”focus” improves the OS
ability to find good solutions for subsets of given cardi-
nality. The fastest improvement of the target subset may
be expected in initial phases of the algorithm, because of
the low initial cycle depth. Later, when the current fea-
ture subset evolves closer to optimum, low-depth cycles
fail to improve and therefore the algorithm broadens the
search (0o = 0+ 1). Though this improves the chance to
get closer to the optimum, the trade-off between finding
a better solution and computational time becomes more
apparent. Consequently, OS tends to improve the solu-
tion most considerably during the fastest initial search
stages. This behavior is advantageous, because it gives
the option of stopping the search after a while without
serious result-degrading consequences. Let us summarize
the key OS advantages:

e It may be looked upon as a universal tuning mech-
anism, being able to improve solutions obtained in
other way.
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Figure 6: Simplified Oscillating Search algorithm flowchart.

The randomly initialized OS is very fast, in case
of very high-dimensional problems may become the
only applicable procedure. E.g., in document analy-
sis for search of the best 1000 words out of a vocabu-
lary of 50000 even the simplest alternative methods
may prove to be too slow.

Because the OS processes subsets of target cardinal-
ity from the very beginning, it may find solutions
even in cases, where the sequential procedures fail
due to numerical problems.

Because the solution improves gradually after each
oscillation cycle, with the most notable improve-
ments at the beginning, it is possible to terminate
the algorithm prematurely after a specified amount
of time to obtain a usable solution. The OS is thus
suitable for use in real-time systems.

In some cases the sequential search methods tend
to uniformly get caught in certain local extremes.
Running the OS from several different random ini-
tial points gives better chances to avoid that local
extreme.

5.5 Experimental Results of

Search Methods

Sub-optimal

All described sub-optimal sequential search methods
have been tested on a large number of different prob-
lems. Here we demonstrate their performance on 2-class
30-dimensional mammogram data (for dataset details see
Section 7). The graphs in Figure 7 show the OS ability
to outperform other methods even in the simplest se-
quential form (here with A = d in only one randomly
initialized run). ASFFS behavior is well illustrated here
showing better performance than SFFS at a cost of un-
controllably increased time. SFFS and SFS need one
run only to get all solutions. SFFS performance is uni-
formly better than that of SF'S. Note that results in Fig. 7
have been obtained only to compare various search meth-
ods among themselves — using data resubstitution (all
data used both for training and testing). Resubstitu-
tion should not be used to assess the resulting classifier
performance because it yields optimistically biased esti-
mates. Figure 7 illustrates this effect when compared to
Figures 8 and 10 where the accuracy of gaussian classifier
under similar setup is estimated using cross-validation —
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Figure 7: Comparison of sub-optimal methods on Wrapper-based search task (to mazimize gaussian classifier accuracy)

the estimate is then notably lower by ca. 1%. For further
discussion on the applicability of sub-optimal feature se-
lection methods see also Section 7.

5.6 Summary of Recent Sub-optimal Methods

Concerning our current experience, we can give the fol-
lowing recommendations. Floating Search can be con-
sidered the first tool to try. It is reasonably fast and
yields generally very good results in all dimensions at
once, often succeeding in finding global optimum. The
Oscillating Search becomes better choice whenever: 1)
the highest quality of solution must be achieved but op-
timal methods are not applicable, or 2) a reasonable so-
lution is to be found as quickly as possible, or 3) numer-
ical problems hinder the use of sequential methods, or
4) extreme problem dimensionality prevents any use of
sequential methods, or 5) the search is to be performed
in real-time systems. Especially when repeated with dif-
ferent random initial sets the Oscillating Search shows
outstanding potential to overcome local extremes in fa-
vor of global optimum.

It should be stressed that, as opposed to B&B, the
Floating Search and Oscillating Search methods are tol-
erant to deviations from monotonic behaviour of feature
selection criteria. It makes them particularly useful in
conjunction with non-monotonic FS criteria like the error
rate of a classifier (cf. Wrappers [12]), which according
to a number of researchers seem to be the only legitimate
criterion for feature subset evaluation.

Note: Floating and Oscillating Search source codes
can be found at http://ro.utia.cas.cz/dem.html.

6 Mixture Based Methods

For the cases when no simplifying assumptions can be
made about the underlying class distributions we devel-
oped a new approach based on approximating the un-

known class conditional distributions by finite mixtures
of parametrized densities of a special type. In terms
of the required computer storage this pdf estimation is
considerably more efficient than nonparametric pdf esti-
mation methods.

Denote the wth class training set by X, and let the
cardinality of set X, be N,. The modeling approach to
feature selection taken here is to approximate the class
densities by dividing each class w € Q into M, artifi-
cial subclasses. The model assumes that each subclass
m has a multivariate distribution p,,(x|w) with its own
parameters. Let o, be the mixing probability for the
mth subclass, ZM“’ o = 1.The following model for

m=1"—"m

wth class pdf of x is adopted [26], [21]:

p(xlw) = SM 0@ p,, (x|w) =
=M 0 go(x[bo)g(x[b%,, by, @)

Each component density p,,(x|w) includes a nonzero
“background” pdf gy, common to all classes:

(3)

D
go(x|bo) = Hfi($i|b0i)a bo = (bo1,bo2, - -+, bop), (4)

i=1

and a function g specific for each class of the form:

D (3
g(xIb%, bo, ®) = [ | {M

b
] L ai={01) ()

i1 fixilboi)
bﬁz = ( ur:zlv :)n2a"' u7—:1D),
¢ = (¢17¢27" '7¢D) S {0,1}D

The univariate function f; is assumed to be from a fam-
ily of normal densities. The model is based on the idea
to identify a common “background” density for all the
classes and to express each class density as a mixture of
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the product of this “background” density with a class-
specific modulating function defined on a subspace of the
feature vector space. This subspace is chosen by means
of the nonzero binary parameters ¢; and the same sub-
space of X for each component density is used in all
the classes. Any specific univariate function f;(z;|b%,;) is
substituted by the “background” density f;(x;|bo;) when-
ever ¢; is zero. In this way the binary parameters ¢; can
be looked upon as control variables as the complexity
and the structure of the mixture (3) can be controlled
by means of these parameters. For any choice of ¢; the
finite mixture (3) can be rewritten by using (4) and (5)
as

p(X|Oéw, bwa bOa (I)) -
= M T [filwilboi) =% fi(wil b, #7]

Gy = (a?va;v"'vab]‘\%w)v

bw:( L1‘)7 ;7"'7 7\)@)

The EM (“Expectation-Maximization”) algorithm
can be extended to allow a mixture of the form (6) to
be fitted to the data. It should be emphasized that al-
though the model looks rather unfriendly, its form leads
to a tremendous simplification [26] when we use normal
densities for functions f. The use of this model (6) makes
the process of feature selection a much simpler task.

So as to select those features that are most useful in
describing differences between two classes, the Kullback’s
J-divergence defined in terms of the a posteriori proba-
bilities has been adopted as a criterion of discriminatory
content. The goal of the method is to maximize the di-
vergence discrimination, hence the name “Divergence”
method (see [21]). Sample mixture-based F'S results are
given in Section 7.

(6)

7 Applicational Examples

Taking use of our Feature Selection Toolbox (FST) [36]
and related software we have collected a set of examples
to illustrate the expectable behaviour of optimal vs. sub-
optimal and Wrapper [12] vs. Filter [12] feature selection
methods. We investigated the following real data-sets:

- 2-class, 15-dimensional speech data representing
words “yes” and ‘“no” obtained from the British
Telecom; classes are separable with great difficulty.

- 2-class, 30-dimensional mammogram data represent-
ing 357 benign and 212 malignant patient samples,
obtained from the Wisconsin Diagnostic Breast Cen-
ter via the UCI repository [19]. The same dataset
has been used in experiments in Sections 5.5 and
4.4; classes difficult to separate.

- 3-class, 20-dimensional marble data representing dif-
ferent brands of marble stone; classes well separable.

7.1 Data, classifiers and feature selectors all de-
termine classification performance

To illustrate the complexity of problems related to clas-
sification system design we have collected a series of ex-
perimental results in Figures 8 to 11 — in all cases the
mammogram data have been used. We compare standard
feature selection methods in both Wrapper and Filter
settings. In case of Oscillating Search we compare var-
ious example method setups (many others remain pos-
sible) - from fast deterministic 0S(5,IB) (deterministic
sequential Oscillating Search with A = 5 initialized by
Individually Best features) to slow 0S(5,rand15) (se-
quential Oscillating Search with A = 5 called repeatedly
with random initialization as long as at least 15 times
no better solution has been found). Individually Best
(IB) denotes the subset of features obtained simply by
ranking according to individual criterion values.

Whenever a classifier has been trained, standalone or
as a Wrapper, its classification rate was determined using
10-fold cross-validation (90% of data used for training,
10% for testing — repeated 10X to cover all test combi-
nations).

Figure 8 illustrates mainly two points: 1) for this
dataset the gaussian classifier is notably inferior to 1-
Nearest Neighbour. This suggests, that the data dis-
tribution does not exhibit normal behaviour. 2) Bet-
ter results can be obtained by investing more search
time (this is made possible here by the flexibility of the
Oscillating Search procedure). However, the trade-off
between achieved classification rate and search time is
clearly visible. From certain thoroughness of OS setting
any improvement becomes negligible while the search
time penalty increases beyond acceptable limits. More-
over, pushing the search procedure to its limits may have
negative consequences in form of unwantedly biased re-
sult [15], [28].

In Figure 8(b) the speed difference between determin-
istic and randomized search can be clearly seen. Deter-
ministic procedures (0S(5,IB)) tend to be significantly
faster than those randomized, with more stable time
complexity across various subset sizes. However, ran-
domness may be the key property needed to avoid lo-
cal extremes (see the problem, e.g., in Figure 8(a) for
0S(5,IB) gaussian Wrapper with subset sizes 5, 7, and
9). Our experience shows that all deterministic sequen-
tial methods are prone to getting caught in local ex-
tremes. As there is no procedure available to guarantee
optimal Wrapper based feature selection result, the best
results we could get come from the sub-optimal random-
ized Oscillating Search.

The well known “peaking phenomenon” is clearly vis-
ible in Figures 8(a) to 10(a). Figure 8 shows that with
the mammogram dataset the 1-NN classifier performs
best on ca. 13-dimensional subspace, while gaussian clas-
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Figure 9: 1-Nearest Neighbour classifier performance optimized on mammogram data by means of Wrappers and Filters

sifier performs best on ca. 9-dimensional subspace.

Figures 9 and 10 share one representative set of fea-
ture selection procedures used to optimize two different
classifiers — 1-Nearest Neighbour in Figure 9 and gaus-
sian classifier in Figure 10. The main observable points
are in both cases: 1) very good performance/time-cost
ratio of Floating Search in Wrapper setting is confirmed
here, 2) the problem of often indirect (and thus insuffi-
cient) relation between probabilistic distance criteria and
concrete classifiers is clearly visible — Filter based results

tend to be inferior to those of Wrappers when assessed
using concrete classifier accuracy.

In Figure 9 the Filters exhibit mediocre performance.
Bhattacharyya distance clearly has very weak relation to
1-NN performance on this dataset. This is emphasised
even more by the fact that Bhattacharyya optimization
(optimal result yielded by Fast Branch & Bound vs. mere
Individually Best feature ranking) does not lead to any
observable improvement of 1-NN accuracy; moreover, its
impact seems to be of almost random nature. Another
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Figure 10: Gaussian classifier performance optimized on mammogram data by means of Wrappers and Filters

important observation is the Filter and Wrapper time
cost. Wrappers are often considered unusable due to high
time complexity. Here we can see that in many setups
sub-optimal Wrappers are faster than optimal Filters.
Certainly for the presented type of data the problem of
Wrapper time complexity does not play a role.

In Figure 10 the superiority of Wrappers is confirmed.
However, unlike in the preceeding case here Filter opti-
mization brings visible improvement (compare FBB to
IB). This is most likely due to the fact that gaussian
classifier and Bhattacharyya distance criterion (here in
normal form) are both based on the same assumption of
the normality of data. The fact that the assumption is
not true for this particular dataset results in mediocre
overall gaussian classifier performance.

The graph of Filter results in Figure 11 illustrates
mainly the power of advanced sub-optimal feature selec-
tion methods. In this case both the Floating Search and
Oscillating Search methods in various settings yielded
solutions equal or negligibly different from the optimum
(verified by means of Fast Branch & Bound). However,
it also illustrates the limits of Individual Best feature
ranking. It is a well-known fact that two best features
may not be equal to the best pair; this is well illustrated
here. Note also the monotonicity of the evaluated Bhat-
tacharyya distance criterion. On one hand it enables
finding optimum by means of FBB, on the other hand it
makes impossible to identify the best feature subset car-
dinality. Figure 11(b) shows the principal difference be-
tween optimal and sub-optimal methods regarding time
complexity.

It should be stressed that for both SFFS and SBFS

the speed advantage is considerably higher than it may
seem from Figures 9(b), 10(b) and 11(b) — note that
unlike other presented methods the SFFS and SBFS need
only one run to obtain results for all subset sizes (its one
time cost denoted by respective horizontal lines).

7.2 Mixture-based classification task example

Table 1 shows classification error rates achieved by
the “Approximation” and “Divergence” mixture-based
methods (see Section 6) with different number of com-
ponents in comparison to gaussian classifier. All results
were computed on the full set of features. In case of
the “Approximation” and “Divergence” methods the al-
gorithms were tested with two different initializations:
random and “dogs & rabbits” cluster analysis [17] in-
spired by the self-organizing-map principle. Classifiers
were trained on the first half of the dataset and tested
on the second half (holdout method). Both mixture-
based methods with the respective pseudo-Bayes clas-
sifiers were defined especially for use with multimodal
data. Correspondingly, from table 1 it is possible to
see that single component modeling may not be suffi-
cient for real data, best results have been achieved with
more than one component — with 5 mixture components
(see column approx.5c¢) for speech data and 1, 5 or 20
components for mammogram data. The underlying data
structure has been modeled precisely enough to achieve
better classification rate when compared to the gaussian
classifier.

Note that Table 1 also illustrates the problem of find-
ing the suitable number of components (the issue is dis-
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Figure 11: Performance of recent optimal and sub-optimal Filter methods when maximizing Bhattacharyya distance

on mammogram data

Gaussian Approx. Approx. Approx. | Approx.

classifier | 1 component | 5 components | 10 comp. | 20 comp.
speech data (random initialization) 8.39 21.61 7.58 9.19 9.03
(dogs & rabbits init.) - 21.61 7.42 6.45 8.39
mammo data  (random initialization) 5.96 5.26 5.26 5.96 4.56
(dogs & rabbits init.) - 5.26 5.26 5.96 5.96

Table 1: Error rates [%] of mizture-based classifiers with different parameters. Results were obtained using the “Ap-
prozimation” mizture modeling method (in this case the alternative “Divergence” method yielded identical results).

cussed, e.g., in Sardo [31]). Note that with the mammo-
gram data about 20 components is needed to achieve no-
table improvement of classification performance. Com-
pare the achieved classification rates to those in Fig-
ures 8, 9 and 10.

7.3 A different view to criterion functions — ex-
perimental comparison

An interesting problem may be to judge the importance
of individual features in real classification tasks. Al-
though in decision theory the importance of every fea-
ture may be evaluated, in practice 1) we usually lack
enough information about the real underlying probabilis-
tic structures and 2) analytical evaluation may become
computationally too expensive. Therefore, many alter-
native evaluation approaches were introduced.

It is generally accepted that in order to obtain rea-
sonable results, the particular feature evaluation crite-
rion should relate to a particular classifier. From this
point of view, we may expect at least slightly different

behavior of the same features with different classifiers.

However, because of different reasons (performance
and simplicity among others) classifier-independent cri-
teria — typically probabilistic distance measures like
Bhattacharyya etc. — have been defined to substitute
for classifier accuracy evaluation (cf. Filters [12]). For
a good overview and discussion of their properties, see
Devijver and Kittler [3]. The “Approximation” and “Di-
vergence” methods (cf. Section 6) also incorporate a
feature evaluation function, which is closely related to
their purpose.

In our example (Table 2) we demonstrate the dif-
ferences of criterion functions implemented in the FST.
We evaluated single features using different criteria and
ordered them increasingly according to the obtained cri-
terion values. In this way “more distinctive” features
appear in the right part of the table, while the “noisy”
ones should remain in the left.

A detailed discussion about the differences between
different criteria behavior is beyond the scope of this
paper. Let us point out some particular observations
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Bhattacharyya | 7 1 4 2 5 0 3 6 10 8 13 9 11 14 12
Divergence | 7 1 4 2 0 5 6 3 10 8 13 9 11 12 14
G.Mahalanobis | 7 1 4 5 2 3 6 &8 0 13 10 11 9 14 12
Patrick Fisher | 7 1 4 3 2 0 6 5 10 9 8 13 12 11 14
Gauss. cl. (10-f.CV) | 12 14 11 9 13 0 2 8 6 1 3 4 7 10 5
I-NN (10-£.CV)| 7 1 4 2 5 6 0 3 8 13 10 11 9 14 12
SVMRBF (10-£.CV)| 7 1 2 5 4 6 3 8 0 13 10 9 11 14 12
approx.le | 7 1 4 2 0 5 6 3 10 8 13 9 11 12 14
approx.boc | 0 13 1 4 12 7 10 3 2 5 9 14 11 6 8
approx.10c | 0 13 1 12 4 7 2 10 3 14 5 9 6 8 11
approx.20c | 0 12 13 1 4 7 10 2 3 14 9 5 11 6 8
diverg.lc | 10 7 4 12 1 0 9 2 11 6 13 3 5 8 14
diverg.bc | 5 12 8 1 0 7 6 2 4 9 10 13 3 11 14
diverg.10c | 5 8 6 7 1 4 10 0 2 9 12 13 3 11 14
diverg.20c | 1 6 5 &8 2 10 7 3 11 9 12 0 14 13 4

Table 2: Single features ordered increasingly according to individual criterion values (i.e., “individual discriminative

power”), 2-class speech data

only. Traditional distance measures (first four rows) gave
comparable results, e.g. feature 14 has been evaluated
as important, 7 or 1 as less important. Results of the
“Divergence” method based evaluation remain relatively
comparable, even if the result depends on the number
of mixture components. More dissimilarities occurred in
the “Approximation” method based evaluation which is
caused by the different nature of approximation criterion
which ranks the features not according to their suitability
for classification, but for data representation in subspace
only.

Our second example (Table 3) demonstrates criteria
differences in another way. We selected subsets of 7 fea-
tures out of 15 so as to maximize particular criteria to
compare the differences between detected “optimal” sub-
sets. Again, results given by traditional distance mea-
sures are comparable. Differences between subsets found
by means of “Approximation” and “Divergence” meth-
ods illustrate their different purpose, although still many
particular features are included in almost every found
subset. Additionally, the “worst” subset, found to min-
imize the Bhattacharyya distance, is shown for illustra-
tion only.

Nevertheless, it should be stressed that by employing
classifier-independent criteria one accepts certain simpli-
fication and possibly misleading assumption about data
(e.g., most of probabilistic criteria are defined for uni-
modal normal distributions only).

7.4 A different view of criterion functions — vi-
sual subspace comparison

The FST may be used to obtain a visual projection of
selected feature subsets. Our examples illustrate spatial
properties of different data sets (easily separable 3-class

marble set in Figure 12, a poorly separable 2-class mam-
mogram set in Figure 13 and the speech set). We selected
feature pairs yielding optimal values of different criteria.
Figures 12(a)—(c) illustrate subsets obtained by means
of optimizing different probabilistic distance measures,
12(d) illustrates the “Approximation” method (5 com-
ponents), and 12(e) the “Divergence” method (5 com-
ponents). As opposed to subsets selected for class dis-
crimination Figure 12(f) illustrates an example of “bad”
feature pairs unsuitable for discrimination, obtained by
means of minimizing the Bhattacharyya distance.

8 Future Work and Applications

Results obtained using the F.S. Toolbox have been re-
peatedly used in our work for several research projects.
Feature selection has been performed on different kinds
of real world data. The kernel code is being flexibly al-
tered for use in different situations (e.g., for comparison
of statistical and genetic approaches to feature selection,
see Mayer et al. [16]). F.S. Toolbox serves as a test-
ing platform for development of new methods. Several
directions of future development are possible. Undoubt-
edly, modification of the code to a parallel version would
be beneficial. As far as the user interface is concerned,
several improvements are possible. The same holds for
the whole package which is built as open one with the
intention to implement newly developed methods in fu-
ture. In addition, for the future we plan to build a sort of
expert or consulting system which would guide an inex-
perienced user toward using the method most convenient
for the problem at hand.
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opt. Bhattacharyya | - - - - - - 6 7 8 - 10 11 12 - 14
opt. Divergence | - - - - - - 6 7 &8 9 10 11 - - 14
opt. G.Mahalanobis | - - - 3 4 - 6 7 - 9 10 - 12 - -
opt. Patrick Fisher | - - - - - - 6 7 &8 9 10 11 - - 14
s-opt. Gauss.cl. 1I0CV | - - - - 4 - 6 - & - 10 11 12 13 -
s-opt. I-NN10CV| 0 - - 3 4 - 6 - - 9 10 - 12 - -
s-opt. SVM RBF 10CV | - - - - 4 - - 7 8 9 10 11 12 - -
approx.l¢ | - - - - - - - - 8 9 10 11 12 13 14
approx.bc¢ | - - 2 - - 5 6 - 8 9 - 11 - - 14
approx.10¢c| - - - 3 - 5 6 - 8 9 10 11 - - -
approx.20c | - - - 3 - 5 6 - &8 9 10 11 - - -
diverg.l¢c | - - - 3 - 5 6 - 8 - - 1 - 13 14
diverg.bc | - - - 3 4 - - - - 9 10 11 - 13 14
diverg.10c | - - 2 3 - - - - 9 - 1 12 13 14
diverg.20c | O - - - 4 - - - - 9 - 1 12 13 14
worst Bhattacharyya | 0 1 2 3 - 5 6 - 8 - - - - - -

Table 3: Selected subsets of 7 features, 2-class speech data

9 Summary

The current state of art in feature selection based di-
mensionality reduction for decision problems of classifi-
cation type has been overviewed. A number of recent
feature subset search strategies has been reviewed and
compared. Following the analysis of their respective ad-
vantages and shortcomings, the conditions under which
certain strategies are more pertinent than others have
been suggested.

Recent developments of B&B based algorithms for
optimal search led to considerable improvements of the
speed of search. Nevertheless, the principal exponential
nature of optimal search remains and will remain one of
key factors motivating the development of sub-optimal
strategies. Among the family of sequential search al-
gorithms the Floating and Oscillating search methods
deserve particular attention. Two alternative feature se-
lection methods based on mixture modeling have been
presented. They are suitable for cases, when no a pri-
ori information on underlying probability structures is
known. Many of recent feature selection methods have
been implemented in Feature Selection Toolbox and dis-
cussed here in connection with real classification tasks.
The software has been used to demostrate the differences
between different criteria and differently selected feature
subsets as well as other aspects of classification problems.
The importance of feature selection for classification per-
formance has been clearly demonstrated.
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Figure 13: Visual comparison of 2D subspaces found on less separable mammogram data by maximizing: a) Bhat-
tacharyya (the same was found by Divergence), b) Generalized Mahalanobis, c¢) Patrick-Fischer distances. Mixture
model methods using 5 components results: “Approximation” method - d), “Divergence” method - €). Picture f)
demonstrates a subspace unsuitable for discrimination (found by minimizing the Bhattacharyya distance).
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